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THE NUMERICAL SOLUTION OF THE ORR-SOMMERFELD EQUATION
AT LARGE REYNOLDS NUMBER

by

Thomas H. Hughes

ABSTRACT

The use of an automatically-determined variable mesh in the
numerical solution of the Orr-Sommerfeld equation is explored for
plane Poiseuille flow. The usual finite-difference matrix method
with a modified eigenvalue-search-procedure is used. The method
is applicable at both small and very large Reynolds numbers and
is used to piece together existing numerical and asymptotic re-
sults. The curve of neutral stability and several eigenfunctions
are presented for plane Poiseuille flow. It is also demonstrated
that the kink in the neutral curve is a feature of the Orr-
Sommerfeld equation and not just a deficiency in the asymptotic
methods as previously suggested.

I. INTRODUCTION

The Orr-Sommerfeld equation with its associated boundary conditions
is a two-point boundary-value problem that has its origin in the linear
theory of hydrodynamic stability. It has been observed experimentally
that laminar flow occurs at low Reynolds number and that turbulent flow
is the more natural flow regime for the same situation at higher Reynolds
number. Since unavoidable irregularities and vibrations occur in any real
flow situation, such disturbances to the basic flow must die out if a
_Mur fimr u :a remain lamim Rmrever, the laminar regima tu said




The Orr-Sommerfeld equation governs the two~dimensional disturbances

dimensional flows given by a velocity field

of parallel steady two-
u = {U(y),0} where the x direction is in the direction of flow and the
] s

n is chosen perpendicular to the flow. These flows include cer-

y directio
tain boundary layers, wakes, jets and flows between parallel planes. In
this report only plane Poiseuille flow will be considered although it

ry layers

should not be difficult to extend the numerical method to bounda

and shear layers. In the case of plane Poiseuille flow between stationary

parallel plates, the velocity profile is

Dyl y2 (1)

where the problem has been normalized such that the plates are located at

y =+l and y = -1, and the maximum velocity at y = 0 is unity.

Consider a two-dimensional disturbance to this basic flow with

velocity components {u',v'} and take a single complex Fourier component

{u',v'} = Real{[u(y),v(y)]Exp[ia(x-ct)]}.

The quantity o is real and is the wave number in the x direction; c is
complex, the real part, o is the wave velocity and the imaginary part

of ¢, namely i represents the amplification or damping of the oscil-
lation with the passage of time. The disturbance velocities u' and v'

are both required to vanish at the boundaries y = +1 and -1. In order

to derive the disturbance differential equations the perturbed velocity
field y = {U+u',v'} is substituted into the Navier-Stokes equations and
then the disturbance equations are linearized. It is convenient to
define a stream function in the form -

¥ = ¢(y)Exp[ia(x-ct)]




where R is the Reynolds number. The boundary conditions are ¢ = ¢' = 0
at y = +1 and y = -1. For plane Poiseuille flow U(y) = 1 - y2 is an
even function so that ¢ may be split into odd and even solutions. Only
the even solution will be studied here, and therefore, only the half-

channel y = -1 to y = 0 need be considered. The boundary conditions
are

¢=¢'=0aty=-1and ¢' =9¢""' =0 at y = 0. (3)

The mathematical problem of hydrodynamic stability now becomes an
eigenvalue problem of Eq. (2) with the boundary conditions (3) and
yields an eigenrelation between o, R, . and cy In general this
eigenvalue problem is very difficult to solve. If ey is positive, the
flow is said to be unstable according to linearized theory; otherwise
s 50
the result of plotting O against R is called the 'neutral' curve, or
the curve of neutral stability (see Fig. 1). Of particular interest
is the lowest Reynolds number for which all disturbances are stable.

From previous workl the range of the parameters along the neutral

the flow is stable. If one considers the neutral disturbances, c

curve are known as follows:

R is real, R . 2 5000 and R + = 3

o is real, >0, with oy = 1:5and a >0 as R> =



II. REVIEW OF PREVIOUS WORK

Early studies of the Orr-Sommerfeld equation were based upon the

fact that the Reynolds number is usually fairly large and consequently

asymptotic methods were used. More recently numerical methods have

been used extensively. There are two different numerical approaches:
(i) the initial-value (or shooting) method in which the two-point
boundary-value problem is solved by an initial-value numerical inte-
gration, and (ii) the matrix finite-difference method in which the
differential equation is approximated by a finite-difference equation
and then the resulting matrix eigenvalue problem is solved. The

method to be presented in this report is a modification of the matrix
finite-difference method. In addition the calculations by this new
method are made more efficient by using some elements of the asymptotic
analysis. Consequently, both asymptotic and numerical methods are re-

viewed in the following paragraphs.

Asymptotic Methods

The Orr-Sommerfeld equation (2) is a fourth-order linear equation;
the solution therefore consists of a linear combination of four basic

solutions and may be written ¢ = ¢ ¢ e, ¢> a5 c3¢3 £ c4¢ As a ’ =

starting point in the asymptotic analysis, it is natural to expand

in powers of (iaR) - The zeroth-order solutions of such an expan-
sion are the so-called inviscid solutions, ¢ and 4)2, which satisfy the
differential equation

- n_2 - T
(U=c) (¢"-a"¢) - U"¢ = 0. (4)

Mx« the case ¢ = 0. Since it is known that the value of Er ;!.u
‘that U(y) - ¢ hunlemiuthercuge-l*:y‘ﬂ,lqmimﬂ)
) x,wb;mye"-»‘,,thr Thus




solutions to (4) cannot satisfy all the boundary conditions (3),

since (4) is only a second-order differential equation. Neverthe-
less these inviscid solutions are correct except in the neighborhood
of yc and at the wall y = -1. The other two basic solutionms, ¢3 and
¢4, are corrections to the inviscid solutions and are known as vis-
cous solutions. The viscous solution ¢3 decreases exponentially

with distance from the wall and is the one which is physically
realistic, while the other ¢4 increases exponentially with distance
from the wall and must be rejected. Much of the difficulty of linear
hydrodynamic stability theory is concerned with the details of pro-
viding these necessary corrections. For detailed information concern-
ing the asymptotic work the reader is referred to the book by Lin1 and

the review articles by Stuart,2 Shen,3 and Reid.a

Initial-Value (Shooting) Methods

There are several variations to this method and the following dis-
cussion illustrates the basic idea. Choose a particular value of R
(with ci = 0) and estimate a and CLe Using a numerical integration
scheme such as Runge-Kutta, integrate the Orr-Sommerfeld equation
fromy = 0 toy = -1 to get two independent solutions ¢a and ¢b. To
initiate the integration the initial values*are chosen to satisfy
9'(0) =¢"'(0) =0 and ¢ =1, ¢ =0, ¢ =0 and ¢y = 1. One of the
solutions will be an inviscid solution and the other of exponential
type. Now apply the boundary conditions at y = -1 to ¢ = A¢a £ ¢b.
That is, A¢a(-1) + ¢b(—1) = 0 and A¢;(-—1) + ¢t”(—1) = 0. These equa-
tions will be satisfied if the characteristic equation ¢a(-l)¢g(—l) -
¢;(-1)¢b(—1) = 0 is satisfied. Since ¢ is complex there are two
real equations for a and c, that can be solved iteratively using a

mmdzr g.mh as Newton' s.
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‘concerned with the numerical stability

matching in the middle. Supression of the growing solution during

the calculation of the well-behaved solution also overcomes this
difficulty and has been used quite successfully with several varia-

’ 7
tions such as: filt:ering,6 orthonormalization, and parallel

8
shooting.

Finite-Difference Methods

In the finite-difference or matrix methods the interval
-1 <y <0 is divided into a uniform (or non-uniform) grid of
mesh points and the differential equation is approximated at

each mesh point by a difference equation using centered difference

approximations to the derivatives. Care is taken to use difference
expressions that minimize the truncation error. When the boundary
conditions are incorporated, the resulting system of linear equa-

tions can be written as a five-banded complex matrix equation
[A(a,R) + (e, + ici)B(a)M =

For given a and R this is a standard eigenvalue problem for
e =l + ici. Since one usually wants the neutral curve, Cres 0,
a double search must be carried out: first find c for given a and
R and then vary o until C= 0. A good estimate for c is usually
available (e.g., from a previous R value ) so that an efficient
numerical eigenvalue method consists of finding the zeros of the
determinant IA - cB|. This determinant is calculated by reducing
the matrix to upper triangular form by Gaussian elimination and
then a rootfinder such as that of Aitken, Muller, Newton, or

Laguerre is used. 3

9
Thomas” in 1953 and subsequently by Kurtz, e 0Os! boz‘ne12

Thomasg used the method as outlined above without a root
for plane Poiseuille flow and Kurtzlo studied sm
flows using the above method with Muller s roo:
used a very different inner-outer type ite

This method was first used on the Orr-Sommerfeld equation by
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and Helgasonl4 tried to get around the often encountered rootfinder
difficulties by transforming the problem to the standard matrix
eigenvalue problem A® = c® and then using the QR algorithm to compute

the eigenvalues directly.




III. DETERMINATION OF THE VARIABLE MESH

The matrix finite-difference method is used in this study with a
non-uniform mesh and a modified eigenvalue search procedure discussed
in Section V. It is desirable to have a relatively high density of
mesh points in the critical layer and in the viscous layer at the wall
where ¢(y) is changing rapidly. Although the mesh spacing mighiabe
specified analytically once and for all as in Gary and Helgason or
Roberts,lS the use of an automatically determined and corrected mesh

6517
appears to

point distribution using the ideas given by Pearsonl
be highly flexible and desirable. As in Pearson the mesh point spac-
ing is initially uniform; usually 100 equal intervals in -1 <y < 0
are sufficient. Setting ¢(0) = 1 and using an estimate for o, c»

and R (c:i = 0) from Thcnnas9 for example, a first approximation to

the eigenfunction is calculated by solving the finite difference equa-
tions by Gaussian elimination. New mesh points are then inserted be-
tween any pair of adjacent mesh points v; and Vi1 for which

lg(yi+1) - g(yi)l exceeds a predetermined limit §.* The number of

such mesh points inserted (uniformly) between yi and y is approxi-

Sl
mately equal to lgi+1 - gi| /8. Using this modified mesh the finite
difference equations are solved again, new mesh points inserted, and

so on; the process is continued iteratively until lg,+1 -g.| <86
i i
everywhere. The value of § is chosen to be a small fraction, El’
(usually €, = 0.04 or 0.015) of the computed value of max, {g, }-
151

mini(gi}. Since the insertion of new mesh points may result in a
locally abrupt change in interval size, with some consequent loss in
the accuracy of the finite-difference approximations, a smoothing
process is carried out prior to each new Gaussian elimination sweep.
This smoothing process simply consists in replacing each mesh point
v by a new point yi via yi = %(y:ll_l + yi+l) for 1. = 1,2.3....; 1In
sequence. It was found necessary to repeat this smoothing sweep

about five times each Gaussian elimination sweep for best results,

An example of a non-uniform mesh generated in this way is shown in
Figure 3.

*The real and imaginary parts of ¢ are treated

as
functions denoted collectively in this secti et

on by g.
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The above paragraph contains a general description of the method
used; however two modifications to this basic procedure were found help-
ful. First, examination of the eigenfunctions revealed a sharp corner
at the wall, i.e., ¢' varies rapidly and requires a dense mesh. The pro-
gram was modified to examine both the real and imaginary parts of ¢ and
¢' as above. Higher derivatives could also be examined but this was not
found necessary. Secondly, as R becomes larger the viscous layer at the
wall and the critical layer crowd toward y = -1 and, since there is no
provision for eliminating unnecessary mesh points, the number of mesh
points could grow excessively. It was found that the distance from the
wall to the critical layer at i is a good measure of the width of the
dense mesh zone. Thus the routine was modified to permit a compaction
of the mesh points toward the wall whenever the estimated ¢, was smaller

than before. The shifting equations used are*

(y1 + 1)

b P e g - y
S + (yC ) (yc yc) for 4 e e

where k is the largest i such that Yae =~ e and

¥
T s I S = &
yi yi oe yc (yc yc) For 4 k¥l , onvoli=l,

where yé is the value of h at the estimated'value of e With these
two modifications the routine generated a nearly optimum density of

mesh points over the entire range of parameters of interest.

Exactly how this mesh point generating routine is incorporated into

the eigenvalue search is somewhat arbitrary. In this study the emphasis
- was on computing the neutral curve and calculations were started at one
~ value of R and proceeded to a new (usually larger) value of R with c

i
lmupmtmudmamtnlwmmdsad
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Whenever a calculation was started from a uniform mesh many mesh

points were added at first but as R was increased few additional mesh

points were needed due to the shifting with Vo It might appear that

the first calculation using a uniform mesh spacing must be performed
only at a moderate value of R, but with proper choice of the number

of initial uniform points and § the calculations could be started with

a uniform mesh at any Reynolds number up to about 109. Details con-

cerning the number of points needed and their density can be found

in Section VI and in the figures.
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IV. FINITE-DIFFERENCE EQUATIONS

If the non-uniform mesh-point spacing were given by an analytic
expression, then the differential equation could be transformed into
a new differential equation which could be approximated using finite-
difference expressions for uniform spacing. Such an approach has been
considered by Robert:sl5 and Toomre,18 however in this study the mesh-
point spacing is not so defined and Lagrangian expressions for arbitrary
spacing must be used. During the initial phase of this work the Orr-
Sommerfeld equation was treated as a single fourth-order equation, then
later work used an equivalent second-order system and finally an equivalent
first-order system was also tried.* For the purpose of manipulating
finite-difference expressions it is more convenient to define € = (iaR)_l
and write the Orr-Sommerfeld equation as

¢iv

L

S N U AR NOTIEN (5)
where f1 = -Zsaz ~ L abc H yz and f, = ea4 i az(l-c—yz) - 2 and the

boundary conditions are ¢(-1) = ¢'(-1) = ¢'(0) = ¢"'(0) = 0. An

equivalent second-order system is

v+ et - 27T = 0,

4"-w+nz¢-e
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with boundary conditions ¢(-1) = x(-1) = x(0) = 6(0) = 0. In these

equations ¢, ¥, 6, and x are all complex functions of y and in the
work that follows the finite-di
tten to use complex arithmetic.

fference expressions are complex and

the computer programs were wri

As discussed in Hildebrand,19 for example, denote the mesh points

for n odd by Vi k = -n,...,0,...,0, and then the Lagrangian finite

difference expression for the r-th derivative of a 2n-th order ap-

proximating polynomial is given by

s TS (e
— f(x) = — (2, (x y
dxr k=-n dxr & "
where
e (x—x_n)...(x—xk_l)(x-xk+1)...(x—xn)
%)=
T A

Using this equation the five-point Lagrangian approximation to the

fourth derivative evaluated at the center point is found to be

& §
— f(x ) = 24 flx/n
dy4 o = St L&
2
where T = 12_2 (xk-xi). Similarly, the three-point Lagrangian
ifk

approximation to the second derivative evaluated at the center point 2
is Gk S,
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evaluating fl, fz, and £, at y = Y The first-order system is approxi-

3
mated in such a way that only the values at vy and Yi4q are involved.

Define h = T L A then the finite-difference equations are given by

% By =% = % E-1’53,1+%5("‘1+1 " s—l(%ﬂ -
'rlf Gigr = ¥p) ='21' (O340 + 89>
RN R (g +99) =3 8y + 4,
and
Tl{ (0540 ~ 9y) = % Ogpp + %)
where f3,i+% is f3 evaluated at % (yi+l + yi).

If the mesh point spacing were uniform, the approximations (8) and
(9) would be 0(h2) accurate because of cancellation of the O(h) error
terms. In this work the finite-difference approximations to the fourth-
order equation and the second-order system are only O(h) accurate where
h is the maximum step size over the five po*nts used. However the finite-
difference approximations to the first-order system are chosen to extend
over only one interval and, therefore, are O(hz) accurate. This differ-
ence in accuracy was strikingly demonstrated in actual calculations. The

results of the first-order system for essentially the same mesh as used
for the higher-order equations are several orders of magnitude more
accurate. Eltﬂ; in this stuéy i; waa noticed that the second-derivative
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1
e (1+41) ,, (1), %
i A o that ¢ /9 e
i h behavior like Exp(e “y) s
e s i i der of h is cancelled by the
Therefore if h v |¢ °|, any increase in or

iati i firmed by actual
increase in the order of differentiation. This was con y

I itude in the
calculation It was found that h was about 'E [ in magnitu

to the
region near the wall and that the results for both approximations
e

second derivative were comparable.

i i in matrix
The system of finite-difference equations can be written in

form A(a,c,R)® = 0. For the fourth-order system the rows are the finite-
s’ ’ ;

difference equations centered at Y1 Yoseee
The columns are the coefficients of the unknowns

»¥y in sequence where

= -1 and Yy = 0. '
¢ ,0 (] The boundary conditions are incorporated into this system
IRV ERRERL T ; i :
of equations by setting ¢(-1) = ¢o = 0, by assuming that s Y.q
Yy = Y80 that ¢'(-1) = 0 implies 45_1 = ®+l; by assuming that Tne] o Ty ™
Yy T Yy_1 S° that ¢'(0) = 0 implies ¢N+l = ¢N—l and finally assuln:l.nfl

- = - so that ¢"'(0) = 0 implies & =io oo alihe
IN+2” N+ T YN-1 T V-2 S© ¢ N+2 © “N-2
matrix A is an N by N matrix of complex elements with the only nonzero

Yo

elements along the main diagonal and the two sub- and super-diagonals,
i.e., A is five-banded. The set of linear equations approximating the
system of second-order equations can also be written as a five-banded
complex matrix equation. The rows are the N pairs (y" equation before
the ¢" equation) of finite- difference equations centered at yl’y2""’yN
in sequence. The columns are the coefficients of the unknowns

'pl’ cbl, wz, [ ""’WN’@N' The boundary conditions at Yy = -1 are used to
eliminate wo and <I>o by using ¢(-1) = ¢° = 0 and by assuming that

o

be combined with a finite difference approximation at ¥, to the second X

equation of (6) to yield wo =(2/h2)¢ +1° The boundary conditions at y = 0 = e
uation to ‘

wN+1 and ¢N+1' With this ordering the matrix A 1.3 @y 2]

five-banded complex matrix. :

W U T h so that ¢'(-1) = 0, which implies <I’_1 = ¢+1, can

are used in the same way as with the fourth-order eq

With careful ordering of the equat
lina_t: finite-difference equations

;
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(7) can be written as a seven-banded complex 4N by 4N matrix
equation. The rows are the N sets of equations centered at
yl, yz,...,yN in sequence with the equation ordering y' = ...,
8' = ..., X" = ..., ¢' = ... in each set. The columns are the
coefficients of the 4N unknowns, 90, wo’ 91, wl, Ql’ Xpoeeos
eN-l’ ¢N—1’ ¢N-1’ Xy-1° wN’ @N. The boundary conditions yield
$(-1) = ¢° =0, x(-1) = W B 0, x(0) = Xy = 0 and 68(0) = GN = 0.
Both storage requirements and computing time would be reduced
if one could retain the five-banded structure previously ob-
tained with the fourth-order equation and the second-order
system. This can be accomplished by using a 'staggered' dif-
ference scheme and careful ordering of the equations and un-
knowns. The equations containing 6' and X' would be center-
differenced at the 4 points, but the equations containing 6'
and ¢' would be center-differenced at the midpoints between
adjacent mesh points. Unfortunately, this system is only O(h)
accurate and the advantages of going to a first-order system

are lost.

For most of the calculations the second-order system was
found to be the best compromise between accuracy and computing
time. The calculations using the fourth-order equation were
found to be somewhat faster but noticeably less accurate. On
the other hand the calculations using the first-order system
were about four times slower than the second-order system be-
cause there are twice as many equations and one additional sub-
band must be transformed to zero by Gauséian elimination.

m and this was of great help in the region
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V. SOLUTION OF THE EIGENVALUE PROBLEM

One of the standard methods of solving this general matrix

eigenvalue problem, A(a,R,cr,ci)q) = 0, is to use a rootfinder to

numerically locate the zeros of the determinant of A, denoted by

detA. As with any algorithm that uses a rootfinder routine, the

overall method can be very efficient if a good estimate of the

location of the zero is available. Since the system of equations

is complex, the determinant is also complex and can be used to
determine two of the four parameters o, R, o e while the other
two are held constant during the eigenvalue search. To obtain the
'neutral curve,' it is convenient to set e, = 0 and calculate the
values of g and . for a sequence of values of R. Such a sequence
of calculations is started from some known results, near Rmin for
example, and then R is incremented to larger values with good esti-
mates of o and c, obtained by quadratic extrapolation. Another
common choice (see Sec. II) would be to assign values of a and R
and find c = cr ot ici; however, this method requires a second

iteration to find ¢ = 0.

To find the zeros of detA, which is a complex-valued non-
linear function of the two real parameters o and c » the two-
dimensional version of Newton's method is used. Th;s can be
written conveniently as a system of two linear equations for the
corrections Ao and Acr:

ar or n
auAG"'——-Aerst

acr

s 3s
e Aﬂ+-a-a;Acr=s
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obtained from previous calculations, the rootfinder usually converged

in two to six iterations to the desired accuracy.

The evaluation of the determinant is performed by reducing the
matrix A to upper triangular form using Gaussian elimination and
then computing the product of the diagonal terms (see Wilkinson,20
for example). The Gaussian elimination is performed in complex
arithmetic in a way that preserves the banded structure of the
matrix. The largest element in absolute value below the diagonal
in each column is used as the pivot. This 'partial pivoting' may
add nonzero elements above the diagonal where zeros existed be-
fore, but only in at most the two (in the five-band case) or three
(in the seven-band case) superdiagonals above the existing nonzero
diagonals. Conceptually the computation of the product of the
diagonal terms is a simple operation but when 100 to 1000 or more
terms are involved, one invariably has underflow or overflow
difficulties even if the numbers are close to one. To avoid this
difficulty the determinant is scaled to have a magnitude of unity
at the estimated values of a and e, before the rootfinder iteration
begins. The scaling factors are saved and applied throughout the
remainder of the rootfinder iterations. When an approximation to
the eigenfunction is required either by the mesh generating and
testing routine or for final results, the value of $(0) is set
equal to unity and then the resulting set of nonhomogeneous equa-
tions is solved by back substitution.

This technique of finding the eigenvalues, o and cpo by
locating the zeros of the determinant worked reasonably well to
the three digit accuracy required for the graphical results. How-
ever in the region of the neutral curve around the kink, the method
%mg%, The difficulty vas traced to the fact that the
: ot  sensitive to
o
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that c is a better eigenvalue even though a double search is re-
quired. Thomasg experienced the opposite difficulty (instability)
when he performed the Gaussian elimination starting at the center
y = 0 and working toward the wall y = -1. However, when the Gaussian

rted at the wall--as done here--he was able to

elimination was sta

find the roots.

Improved Eigenvalue Search
cause the determinant evaluation method did not yield wholly

Be
satisfactory results an alternative method of finding the eigenvalues
The following method has been found to be very success-

of finding the zeros of detA, ¢(0) is set equal to
the boundary conditions is left unsatisfied when
The Newton rootfinder

was sought.

ful. Instead
unity and one of
the finite-difference equations are set up.
is used to find the parameter values such that the unsatisfied

boundary condition is correct. In this study the boundary condition

$(-1) = 0 was not satisfied initially and o and ¢, were sought so
that ¢(-1) = 0 is satisfied. The resulting set of linear equations
is nonhomogeneous, i.e., A? = b, and can be solved for given values
of a and . by Gaussian elimination starting at y = -1 and back sub-

stitution to get the value of ¢ at y = -1. The matrix A is still
five-banded (seven bands in the first-order system case) but the un-
knowns are now <I>°, <I>1,. i, @N_land there is only one nonzero sub-—
diagonal band (two subdiagonals for the first-order system) to be
set to zero by the Gaussian elimination. This method is highly
reliable and one can obtain four to six digit accuracy along thel

entire neutral curve.

Another distinct advantage of this method
derivatives needed by the Newton rootfinder
solving the differential equations saf !
Lyg denote the Orr-Sommerfeld oper:
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- 3 A 3
and let ¢ = a—: and ¢ = % For given values of a, c = c, + ici,

and R, the complex functibns ¢, ¢ and ¢ are given by the solutions

of the following three problems:

0, ¢'(-1)

0oNe(DHE=R15 & 5(0) = 0" (0) = 0,

(1) Lo

(i1) Lygé = £; 9'(-1) = 0, 9(0) = $'(0) = §"'(0) = 0,

vhere F = 404" - 4039 + 1R[(1-y2-c) (¢"-300) + 2¢]

(111) Lygd = £3 8'(-1) = 0, §(0) = ' (0) = ¢"'(0) = O,

where f = -iaR(¢" - a2¢).

Problems (ii) and (iii) are referred to as variational problems by
K,t-_ller.8 The finite-difference approximations to these three prob-
lems yield three systems of linear equations A¢ = b, AD = E, A:I; = 1:
where A is the same matrix in all three problems. The unknown
vectors ¢, 3, 5 are the finite-difference approximations to ¢, E;, ;
respectively, b i8 the nonhomogeneous right hand side due to the
normalization condition ¢(0) = 1 and b and l: are finite-difference
approximations of T and E These three problems can be solved to-
gether by transforming A to upper triangular .form, solving for @

and next computing b and I:: Then the required values 3(-1) and

5(-1) can be calculated by transforming b and l; with multipliers
saved from the previous triangularization and then back substitution.
It is assumed that the mnuniform mesh spacing appropriate to ¢ is

also appropriate for ¢ and 8

The author is not aware of any extensive development in the
sis literature of the technique of partially satis-
1 order two-point boundary-
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the finding of the solution to a set of linear equations by well
established and reliable methods. The use of this technique here

was motivated by experience with solving the eigenvalue problem
2% ‘
when asymptotic approximations are used. ’ Having found

asymptotic approximations to four independent solutions of the

the eigenvalue problem is solved by first

Orr-Sommerfeld equation,
imposing a normalization condition somewhere in -1 <y <0

(namely, the non-singular inviscid solution ¢l is set equal to

unity at y = yc). Next a linear combination of the inviscid

solutions is required to satisfy the boundary conditions at y = 0

(¢’3 is exponentially small at y = 0 and ¢A is rejected). Finally

'characteristic equation' used to find the eigenvalues is the
= -1,

the
condition for satisfying the boundary conditions at y
This characteristic equation is solved using a Newton rootfinder.
Reliable and accurate results were easily obtained. A closely
related technique was discussed in a paper by Reynolds and
Pot:ter22 who used a filtered shooting scheme to construct a solu-
tion for given a, R and c, which satisfied the central boundary
conditions and one of the wall conditions. A Newton rootfinder
was then used to adjust two of the parameters until the second

wall condition was satisfied.

It is of interest to note how this improved eigenvalue search
procedure would be used in the case of boundary-layer velocity pro-
files. The Orr-Sommerfeld equation (2) still applies but now the
region of interest extends fromy = 0 to y + +». The boundary con-
The boundary conditions are ¢(0) = ¢'(0) = O and ¢ v exp(-ay) as
y. > =, In numerical studieslo’u one usually chooses some point,
Vo outside the boundary layer at which Eq. (2) can be simplified
and solved analytically and then the numerical integration S:llttndﬁ
fromy =0 toy = b To apply the method discussed hn
boundary condition ¢(0) = 0 would be tenpormlq »
@mim elimimtim would be carried mrt ﬁ%ﬁ
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VI. RESULTS AND CONCLUSIONS

The aim of this study is to explore the use of an auto-
matically determined variable mesh in the numerical solution of
the Orr-Sommerfeld equation for plane Poiseuille flow. It was
found necessary to modify the usual matrix finite-difference
eigenvalue search procedure. Accurate results are obtained
which extend far into the range where asymptotic results for
large Reynolds number apply. Familiarity with the asymptotic
methods and results was found very useful in developing an ef-
ficient numerical scheme. All calculations were performed on
a CDC 3600 computer in single precision arithmetic (10 signifi-
cant digits) using the machine facilities for complex arithmetic
when needed. All results presented in the figures - except
for the kink - were calculated using the second-order system (6)
with the improved eigenvalue search technique and an initial
uniform mesh of 100 points with the mesh testing parameter €
equal to .04.

The overall neutral curve is shown in Figure 1. This figure
was taken from Reid4 and on the scale of the figure the differ-
ence between the asymptotic and numerical regults can not be dis-
cerned. Figure 2 displays the neutral curve around the minimum
value of R and shows a comparison of several different studies.
The present numerical calculations in this region required about
170 mesh points and about 12 seconds of computing per point on the
neutral curve. Three eigenfunctions at selected values of R are
shown in Figures 5 and 6. These eigenfunctions are compared
to the inviscid eigenfunction for R = = given by ¢_= 1 - yz.*
TIt: can be seen ﬂnt except for near the wall and the critical

unctions are clm zﬁ the (t tistnfmtimm
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esh are
finite-difference approximations (8) and (9) with a uniform m

9,30,12,15 the results sug-
not as accurate as those previously used,

gest that the uniform mesh calculations are reasonably accurate for
plane Poiseuille flow up to a Reynolds number of about 107. A typical

case of the non-uniform mesh spacing generated using the method dis-

cussed in Section III is shown in Figure 3. The effect of the smooth-

ing of the mesh point spacing can be seen. This smoothing was found

to be very important; without it the eigenvalues were highly dependent

upon the choice of mesh spacing even in the case of the first-order
system. The method used in this study is very general and worked
quite well, however after having calculated several examples of this
class of problem it may be possible to preassign the mesh points with
confidence. From Figure 3 and many other similar results it can be
concluded that this problem requires two uniform mesh regions with a
transition between (perhaps a cubic polynomial). The difficulty is
that the location, extent and size of the fine mesh region is not
precisely known. However, these results suggest that the fine mesh
should obviously be next to the wall at y = -1, that a multiple of
(y + 1) may give a good estimate of the extent of the fine mesh and

that a mesh size between [aRl = and [aRl - would be appropriate.

In order to get some idea of the limitations of the method de-
scribed in this report, the calculations were carried out to very
large Reynolds numbers until they failed. A very useful test of the
accuracy of the results is to compare them to the asymptotes to the
neutral curve given by the following:4

Upper branch, R1/3 = 8.44(0;2)'11/15,

111’3

Lower branch, = 5.95(62)-7/5.

The following results were mwm,d




2.

function ¢(0) was no longer sufficient to find an accurate root.
Along the lower branch the calculations proceeded very accurately
to about R = 1012 at which point the numerical results began to
diverge from the asymptote in a manner similar to that shown in
Figure 4 for the 100 uniform point case. Generally the number of
mesh points was less than 400 and the smallest automatically gen-—
erated mesh point spacing was about 0.1 to 0.01 times (OLR)_li and

many orders of magnitude larger than (aR)_l.

The kink in the neutral curve

The kink in the neutral curve is a puzzling detail at large
Reynolds number that appeared in earlier work using asymptotic

methods.4’21

It was conjectured that the kink was due to a de-
ficiency in the asymptotic approximations and might disappear if

a higher-order-accurate theory were developed. In the most com-—
monly used version of the asymptotic theory the kink can be

traced to the loop in the graph of a complex function, called the
Tietjen's function, that occurs in the characteristic equation.
The Tietjen's function, F(z), is the ratio of certain integrals in
the complex plane of the Airy function, Ai(£), (see e.g., Reida):

£ £
f g f L ai(e)ae
Pladss i 8 1

& J AL(e)dE
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‘ﬂith this m»dificatim the kink

hat the eigenfunctions

t:
are shown in Figure 9. It should be noted WA
do not change qualitatively as one passes through the kin g -
s were obtained using the first-order system of equations,

and about 400 mesh points.
points) both

These result
n arithmetic (10 digit),

single precisio
an be started with a uniform mesh (100

The calculation ¢ ‘ 2 .
at an R value less than the kink region - working forward in R throug
k - and also starting at a large R value and working back

the kin
through the kink.

on the scale used in Figures 7 and 8.
ulations required Lsec per point on the curve while

The difference in the results is not discernable
It is interesting to note that

the asymptotic calc
the slow (but accura

quired about 40 seconds per point.

te) first order finite-difference calculation re-

The importance of the kink should not be overemphasized since
it is unlikely that it has any physical significance since - at least

for plane Poiseuille flow - it occurs at a Reynolds number too large

for the linear theory to be relevant. However, these calculations

are difficult and led to several significant improvements in the
numerical method. Although early calculations in this study suggested
that the kink existed, each reasonable numerical improvement in the
method made the calculations more accurate and more reliable. These
improvements include (i) the improved eigenvalue search discussed in“‘
Section V, (ii) the use of the more accurate first-order system, and
(iii) a change in the eigenvalue parameterization. As can be seen in
Figures 1 and 7, the neutral curve is multiple valued for fixed con-
stant values of o or R. The calculation can proceed much more smoothly

if a single monotonic variable were available to parameterize the entire

neutral curve. In the asymptotic theory z, defined above, is just such
a parameter. It tends to 2,30 as R increases along the
the neutral curve and tends to infinity along the
values in the neighborhood of 5.5 at the kink. Wit
eigenvalue search was modified to include pt
calculations at fixed values of z and
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Fig. 7. The Kink in the Neutral Curve (a2 versus R1/3). The solid
line is the asymptotic result and the dots are the numerical

results.
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